
Linear Algebra & Geometry
LECTURE 6

Vector spaces



Vector Spaces

Vectors often appear in physics where they are used to represent 
quantities such as a force, the velocity or the acceleration of an 
object and others, that are not fully representable by a single 
number like, for example, the mass of an object or the volume of 
a solid or the area of a plane region. The fact that they are 
characterized by such properties as the magnitude, the direction, 
orientation and, often, a point of origin (as in the case of a force) 
suggests that they may be represented as arrows whose length is 
proportional to the magnitude. The other attributes like direction, 
orientation and the anchor point are more or less self-explanatory. 



Geometrically, we identify a vector with an ordered pair of points 
AB, point A being the anchor point or the origin of the vector 
while the location of B depends on the remaining attributes of the 
quantity which is being represented by the vector. Usually we 

place an arrow above 𝐴𝐵, 𝐴𝐵, to denote the vector with the origin 
A and the endpoint B.



Two vectors anchored at a point A can be added using the 
parallelogram rule. The sum is also anchored at A. A vector can 
be scaled by a number, a scalar. Scaling preserves the origin and 
the direction of the vector. It may affect the orientation (if the 
scalar is negative) and the length (if the scalar is different from 
both 1 and −1). Hence, in order to create the algebra of vectors 
we consider the set of vectors anchored at a single point. 



In order to use algebraic approach to vectors we consider the 
space ℝ2 or ℝ3 or some such and we assume that all vectors 
originate at (0, … ,0). Thus, every vector is uniquely identified by 
a single point namely, its endpoint. This strategy results in a very 
easy algebraic definition of vector operations. If you have vectors 
v1 and v2 represented by their respective endpoints (a,b) and (c,d) 
then v1+v2 is represented by (a+c,b+d) and p(a,b) by (pa,pb)



We often write (a,b) + (c,d) = (a+c,b+d) and p(a,b) = (pa,pb) but 
you should be aware that this does not mean that we add or scale 
points of the plane (or other Euclidean space). We add and scale 
vectors who by default originate at (0,0) and terminate at (a,b) 
and (c,d) respectively.



Definition. (Vector space, formal definition)

A vector space (also called a linear space) is an ordered triple 
(𝑉,𝕂, 𝑓) where 

• V is an Abelian group with the operation usually denoted by 
+, whose elements are called vectors,

• 𝕂 is a field with operations denoted, somewhat confusingly 
by + and by ⋅ . Elements of 𝕂 are called scalars,

• f is a function from 𝕂 × 𝑉 into V called scaling. 𝑓(𝑝, 𝑣) is 
often, confusingly, denoted by 𝑝 · 𝑣,

such that 

1. ∀𝜆 ∈ 𝕂 ∀𝑢, 𝑣𝑉 𝜆 · (𝑢 + 𝑣) = 𝜆 · 𝑢 + 𝜆 · 𝑣

2. (∀𝛼, 𝛽 ∈ 𝕂)(∀𝑣𝑉) (α + β) · 𝑣 = α · 𝑣 + β · 𝑣

3. (∀𝛼, 𝛽 ∈ 𝕂)(∀𝑣𝑉) (𝛼 · 𝛽) · 𝑣 = 𝛼 · (𝛽 · 𝑣)

4. (∀𝑣𝑉) 1 · 𝑣 = 𝑣, where 1 denotes the identity element 
of the field multiplication (second operation).



Notice the ambiguity caused by the double meaning of the + 
symbol. This is a BAD, UGLY monster but it is traditional. 
We let the context decide which "+" means scalar-to-scalar 
and which vector-to-vector addition. Otherwise we would 
have to introduce extra symbols for scaling and vector 
addition that would also confuse people. And would be hard to 
type.

Similar remark applies to the dot  ⋅ , denoting both scaling (i.e. 
scalar-by-vector multiplication) and scalar-by-scalar 
multiplication.



Another problem is caused by the identity elements. In general 
statements about vector spaces some people use 0 to denote 
the identity element of both the scalar-to-scalar addition and 
vector-to-vector addition and let the context worry. Other 
people, though, myself included, make an effort to distinguish 
between the two using symbols like 0 (boldface zero), 𝕆, θ or 
Θ to denote the "zero vector". The problem is that sometimes 
context is not enough, e.g. 0 ⋅ 0 makes sense both in case 
when the second 0 is the zero scalar and when the second 0 is 
the zero vector. 



Examples.

Let 𝕂 be any field and let 𝑛 ∈ ℕ be a natural number. Then

𝕂𝑛 = { 𝑥1, 𝑥2, … , 𝑥𝑛 : ∀𝑖 = 1,2,…𝑛 𝑥𝑖 ∈ 𝕂}

together with vector addition defined as follows:

𝑥1, 𝑥2, … , 𝑥𝑛 + 𝑦1, 𝑦2, … , 𝑦𝑛 = 𝑥1 + 𝑦1, 𝑥2 + 𝑦2, … , 𝑥𝑛 + 𝑦𝑛
(called component-wise addition)

and scaling 𝛼 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝛼𝑥1, 𝛼𝑥2, … , 𝛼𝑥𝑛 (component-wise 
scaling)

forms a vector space over 𝕂. 

The zero vector is Θ = (0,0, …, 0), the inverse of a vector 𝑣 =
(𝑎1, 𝑎2, … 𝑎𝑛) is (−𝑎1, −𝑎2, … , −𝑎𝑛 ).

Notice that in case of 𝑛 = 1 we get (more or less) that every field is a 
vector space over itself.



Examples.

Let 𝕂 be a field. The set 𝕂[x] of all polynomials over 𝕂 with 
the standard polynomial addition and multiplication by a 
constant from 𝕂 forms a vector space over 𝕂. The zero vector 
0 is the zero polynomial 0. Similarly, the set 𝕂𝑛[𝑥] of 
polynomials of degree less than or equal to n over the field 𝕂
is a vector space.



Example (generalized version of the previous one)

Let 𝕂 be a field and let X be a set (any set). Let 𝑉 = 𝕂𝑋. We 
define function addition and scaling as the usual operations on 
functions (i.e. 𝑓 + 𝑔 𝑥 = 𝑓 𝑥 + 𝑔(𝑥), where the second 
plus denotes operation one in 𝕂 and 𝛼 ⋅ 𝑓 𝑥 = 𝛼 ⋅ 𝑓(𝑥)). 
𝕂𝑋 is a vector space over 𝕂.

Proof. V is obviously closed under + (the sum of two functions 
from V exists and is a function from V). Is 𝑓 + 𝑔 + ℎ =
𝑓 + 𝑔 + ℎ ? WTH does it mean that two functions are 

equal? They have the same domain and range, which is 
obvious, and (∀𝑥 ∈ X) 𝑓 + 𝑔 + ℎ 𝑥 = [ 𝑓 + 𝑔 + ℎ](x). 

The LHS = 𝑓 𝑥 + 𝑔 + ℎ 𝑥 = 𝑓 𝑥 + 𝑔 𝑥 + ℎ 𝑥 =
𝑓 𝑥 + 𝑔 𝑥 + ℎ 𝑥 = 𝑓 + 𝑔 𝑥 + ℎ 𝑥 = [ 𝑓 + 𝑔 +
ℎ] 𝑥 = RHS.

In the same way we can show that + is commutative. What, if 
anything, is the zero vector, Θ? We define Θ 𝑥 = 0 for every 
𝑥 ∈ 𝑋, where "0" denotes the zero scalar.



Proof. (continued)

The inverse for 𝑓 (w.r.t. +) is (−𝑓) defined as −𝑓 𝑥 =
− (𝑓 𝑥 ), where the second minus denotes the inverse in 𝕂 of 
an element of 𝕂 w.r.t. +.

Remaining axioms can be verified in the similar fashion. In 
each case the identity to be verified boils down to an axiom of 
fields. E.g.,         scaling

(𝛼 + 𝛽) ⋅ 𝑓 = 𝛼 ⋅ 𝑓 + 𝛽 ⋅f  
scalar addition                 vector addition

follows from 

field multiplication

(𝛼 + 𝛽) ⋅ 𝑓(𝑥) = 𝛼 ⋅ 𝑓(𝑥) + 𝛽 ⋅ 𝑓(𝑥) for all 𝑥 ∈ 𝑋.

field addition

(distributivity law in the field)



Example. (A REALLY outlandish one)

Let X be any set. We will use 𝑉 = (2𝑋,  ) as the Abelian group 
of vectors, where  denotes the operation of symmetric difference 
of sets, AB = (𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵). We will also use ℤ2, ۩,⨂
as the field of scalars. Scaling is defined as follows: 

for every set A, 0A =  and 1A = A.

Comprehension.
Check that 𝑉, ℤ2,⋅ is a vector space.



FAQ. 1

What the hell is a vector?
The only proper answer to this question, even though a little 
confusing, is "A vector is an element of a vector space". The 
previous example teaches us that sets can be vectors. In other 
examples we have seen numbers, complex numbers, n-tuples of 
numbers, functions, polynomials etc. playing the role of vectors.



FAQ. 2
What the hell is a scalar then?

Well, you probably realize that the answer will be equally trivial 
(or disturbing). Any element of a field 𝕂 may be called a scalar if 
somebody decides to construct a vector space using 𝕂 as the 
second element of the ordered triple constituting a vector space. 
In particular, if we consider 𝕂 a vector space over itself then all 
elements of 𝕂 are at the same time scalars and vectors.



Example.
In the vector space of real numbers over the field of real 
numbers, real numbers are both vectors and scalars. 

In ℂ over ℝ complex numbers are vectors, real numbers are 
scalars. 

In 2𝑋 over ℤ2vectors are subsets of X and there are but two 
scalars, 0 and 1.

What makes general study of vector spaces useful is that 
whatever facts we discover about vector spaces in general they 
are true in each of these spaces.



Theorem. (Arithmetic properties of vector spaces)
In every vector space 𝑉 over a field 𝕂

1. for every vector v, 0 ⋅ 𝑣 = Θ, (Θ stands for the zero vector).

2. for every scalar p, 𝑝 ⋅ Θ = Θ.

3. for every scalar p and for every vector 𝑣, (−𝑝) ⋅ 𝑣 = 𝑝 ⋅
(−𝑣) = −(𝑝 ⋅ 𝑣).

4. for every scalar p and for every vector 𝑣, 𝑝 ⋅ 𝑣 = Θ implies 
𝑝 = 0 or 𝑣 = Θ.

Proof (left as a comprehension exercise).


